

Exploring the Preference for Rice and Wheat

Posted at: 14/05/2025

Exploring the Preference for Rice and WheatGovernment Policies and Agricultural Implications

Introduction

In recent decades, there has been a marked increase in the cultivation of **rice and wheat** in India. These two crops have become dominant in the country's agricultural landscape, especially in states like Punjab, Haryana, and Uttar Pradesh. This shift can be attributed to several factors ranging from **government policies**, **irrigation support**, and **technological advancements**. This preference for rice and wheat has implications for food security, ecological sustainability, and longterm agricultural planning in India.

Reasons Behind the Preference for Rice and Wheat

1. Government Support via Minimum Support Prices (MSP):

 One of the primary reasons for the expansion of rice and wheat acreage is the government's guaranteed procurement of these crops at Minimum Support Prices (MSP).

• This **price assurance** makes rice and wheat a safer financial choice for farmers compared to other crops like pulses, oilseeds, and cotton, which do not have similar procurement mechanisms.

• In contrast, **other crops** often face price volatility, lack of guaranteed market access, and the absence of **price stabilization measures**.

2. Substantial Irrigation Support:

• Rice and wheat are primarily grown in **irrigated areas**, providing a significant advantage in terms of **water availability**, which stabilizes production.

• With irrigation, farmers can avoid the risks associated with **rain-dependent crops** (like pulses and oilseeds), making rice and wheat more reliable.

3. Research and Breeding Focus:

- Rice and wheat receive **priority in public research and breeding**. There have been consistent breakthroughs in breeding high-yielding varieties with better **resilience to pests**, **diseases**, **and climate stress**.
- Example: The **first-generation Green Revolution wheat varieties** such as **Kalyan Sona** and **Sonalika** were designed to resist **rust diseases** and offer higher yields.
- The Indian Council of Agricultural Research (ICAR) has also been developing genome-edited rice and wheat varieties, which are more responsive to fertilizers and water applications, thus further boosting yield.
- 4. Stable Yields and Lower Risk:
 - Rice and wheat are **highly stable crops** in terms of yield. Compared to other crops like oilseeds and pulses, rice and wheat show **relatively lesser yield risk**.
 - This **predictability** in yields encourages farmers to opt for them, as there is less uncertainty about returns.

The Legacy of the Green Revolution

• The **Green Revolution** of the 1960s significantly transformed Indian agriculture, particularly in the case of wheat and rice.

High-yielding varieties (HYVs) of wheat and rice, along with the introduction of **chemical fertilizers**, **pesticides**, and **irrigation technologies**, helped India move from food scarcity to self-sufficiency.

- Wheat Varieties:
 - Kalyan Sona and Sonalika varieties of wheat, released in the late 1960s, had an average yield of **3.8 tonnes/hectare** under normal growing conditions.
 - $\circ\,$ These varieties were bred not only for higher yields but also for **disease resistance**

(such as **rust diseases**) and **climate-smart traits**, making them adaptable to a variety of growing conditions.

- Recent Wheat Innovations:
 - The **HD-3385 variety of wheat**, released in 2023, can yield an average of **6 tonnes/hectare** with a potential of **over 7.3 tonnes/hectare**.
 - It is resistant to all major **rust diseases** (yellow, black, and brown rusts), providing higher yields with lower vulnerability to diseases.

Technological Advances: Genome-Edited Rice and Wheat

Recent developments in **genome editing** have further improved the prospects for rice and wheat cultivation:

Genome Edited Rice

- Pusa DST Rice 1 (Genome-Edited Rice):
 - Parent Line: Cottondora Sannalu (MTU-1010)
 - Edited Gene: DST (drought and salt tolerance) gene, which reduces its expression.
 - Effect: This rice variety is more resilient to **drought**, salinity, and alkalinity stress, making it viable in regions with water scarcity and poor soil conditions.

Genome Edited Wheat

• **Kamala Wheat** (Genome-Edited Wheat):

• Parent Line: Samba Mahsuri

- Edited Gene: Gn1a gene, which is responsible for regulating grain number.
- **Effect**: This wheat variety promotes **cytokinin accumulation**, leading to **higher grain numbers** per ear, and thus improving the overall yield.

Challenges to Crop Diversification

While rice and wheat remain the preferred crops for Indian farmers, this preference has led to several challenges:

- 1. Neglect of Other Crops:
 - **Pulses, oilseeds, and cotton**, which are also crucial for **nutritional diversity** and **agricultural sustainability**, have been pushed to the margins.
 - **Cotton acreage** in states like Punjab has fallen significantly, from **3.4 lakh hectares** in 2015-16 to just **1 lakh hectares** in 2024-25.

2. Ecological Imbalance:

- A focus on monoculture cropping (mainly rice and wheat) has led to **soil degradation**, depletion of water resources, and **reduced biodiversity**.
- For instance, the **over-exploitation of groundwater** for rice cultivation in Punjab has raised concerns about long-term water scarcity.

3. Economic Implications:

• While rice and wheat are profitable in the short term, the **long-term economic sustainability** of such cropping patterns is questionable.

This has led to a need for **crop diversification** and a better focus on improving the productivity of **neglected crops** like pulses, oilseeds, and cotton.

Conclusion

The preference for **rice and wheat** among Indian farmers is driven by several interrelated factors:

- Government support (MSP)
- Irrigation availability

• Research-backed yield stability

However, this dominance has led to several challenges, including **ecological imbalances** and the **marginalization of other crops**. Addressing these issues requires:

- **Policy reforms** that incentivize crop diversification.
- Increased research and development support for pulses, oilseeds, and cotton.
- Sustainable water management practices to ensure that the focus on rice and wheat does not lead to environmental degradation.

www.