

Air India's Boeing 787 Crash

Posted at: 13/06/2025

Air India's Boeing 787 Crash: A Wake-up Call for Aviation Oversight

Context:

A major aviation disaster occurred when an **Air India Boeing 787 Dreamliner** flying from **Ahmedabad to London Gatwick** crashed **shortly after takeoff**, with **242 people** on board. The incident happened in **Meghani Nagar**, a **densely populated area near the Ahmedabad airport**, raising serious concerns about aviation safety and Boeing's aircraft integrity. The cause is still **under investigation**.

This incident adds to the **growing global scrutiny** on Boeing and opens up a wider discussion on air safety, aircraft engineering, pilot preparedness, and the regulatory role of aviation authorities.

Boeing 787 Dreamliner: Features and Background

- Introduced in 2007 as a next-generation long-haul jet.
- First commercial flight: 2012
- Aircraft involved in the crash joined Air India's fleet in 2014.
- Designed to be a more fuel-efficient successor to the Boeing 777.

Key Features

- Material: Made of carbon fibre composite, lighter than aluminium.
- Fuel Efficiency: Uses 25% less fuel than older aircraft.
- Comfort: Larger windows, improved cabin pressure and humidity.

• Variants: Available in 787-8, 787-9, and 787-10 models.

Safety Concerns Surrounding Boeing 787

• **Ongoing Investigations** by the **US Federal Aviation Administration (FAA)** into Boeing's manufacturing and quality control.

Whistleblower Allegations

- Sam Salehpour (2024): Reported that fuselage sections were improperly fastened, increasing long-term safety risks.
- John Barnett (2019): Alleged the use of substandard parts in production; found dead in 2024 under suspicious circumstances.

Notable Incidents Involving Boeing 787

- 2013: Global grounding of 787s due to lithium-ion battery fires.
- 2024: A Latam Airlines 787 experienced a mid-air drop caused by human error.

Why Most Aviation Accidents Occur During Takeoff and Landing

Aviation safety data consistently shows that takeoff and landing are the most dangerous flight phases due to multiple operational challenges.

IATA Data (2005-2023):

- Landing: 53% of all accidents.
- Takeoff: 8.5%.
- Approach: 8.5%.
- Initial climb: 6.1%.

• Rejected takeoffs: 1.8%.

Boeing Data (2015-2024):

- Takeoff + initial climb: Account for 20% of fatal accidents and fatalities, despite only 2% flight time.
- Climb phase: 10% of fatal accidents, 35% of fatalities.
- Final approach + landing: 47% of accidents, 37% of fatalities.
- Cruise phase: Only 10% of fatal accidents, <0.5% of fatalities, though it constitutes 57% of flight duration.

Reasons for Higher Risk During Takeoff and Landing

- Low Altitude, Low Speed: Aircraft are close to the ground, offering very limited time for corrective action.
- Engine Stress: Engines operate at maximum thrust during takeoff, increasing chances of failure.
- **Pilot Workload**: High workload involving **real-time calculations** of wind, aircraft weight, runway conditions, etc.
- Stall Risk: Wing stall more likely during sharp nose-up takeoff angles.

Wing Stall Explained

- Occurs when the angle of attack exceeds safe limits (15-20°).
- Causes turbulent airflow and loss of lift.
- Can result in **sudden loss of altitude** or crash if not corrected quickly.

Environmental Hazards at Low Altitude

- Bird Strikes
- Wind shear and turbulence
- Heavy rain and poor visibility

These are more frequent **during takeoff and landing** phases and harder to manage due to **limited response time**.

Is Flying Still Safe?

Despite occasional high-profile crashes, aviation remains the safest mode of transport.

ICAO Data:

• Accidents per million departures reduced from 4.9 in 2005 to 1.9 in 2023.

Reasons for Improved Safety:

- Better pilot training using simulators.
- Advanced aircraft design and materials.
- Stricter safety protocols and audits.
- Real-time weather forecasting and tracking.