

Capturing Carbon, Creating Change

Posted at: 21/05/2025

Capturing Carbon, Creating Change: India's Sustainable Future

Context

- India has committed to achieving net-zero emissions by 2070, aligning with its pledge under the Paris Climate Agreement.
- To achieve this, India is adopting multiple technological and policy measures, including a focus on **Carbon Capture**, **Utilization**, and **Storage** (CCUS).
- CCUS is particularly important for decarbonizing **hard-to-abate sectors** such as thermal power, steel, cement, and oil refining.
- The technology gained global attention during the **COP28 Climate Summit in Dubai** (2023), where it was seen as essential for deep decarbonization strategies.

What is CCUS (Carbon Capture, Utilization, and Storage)?

- CCUS refers to a suite of technologies aimed at **capturing carbon dioxide** (CO₂) emissions from major sources before they enter the atmosphere.
- Once captured, CO₂ is either:
 - Stored in geological formations such as saline aquifers or depleted oil and gas fields, or
 - **Utilized** in the production of chemicals, fuels, or building materials.
- It is seen as a **transitional solution** to support countries like India in meeting climate goals while continuing to use fossil-based infrastructure.

Three Key Stages of CCUS

1. Capture Stage

- The process involves separating CO₂ from industrial gas streams.
- Technologies used:
 - Chemical solvent-based methods suitable for gas streams with low CO2 concentrations.
 - **Physical solvent-based methods** used when CO₂ concentrations are high.
 - Adsorption techniques applied to medium concentration streams like Steam Methane Reforming (SMR).

2. Utilization Stage

- Captured CO₂ is converted into value-added products, such as: MWW!
 - o Green urea
 - o Dry ice
 - Carbonated beverages
 - Building materials
 - Industrial chemicals

3. Storage Stage

- Long-term storage is done in secure geological locations:
 - Saline aquifers
 - Depleted oil and gas fields

∘ Deep unmineable coal seams	
• These formations act as permanent CO2 sinks to prevent atmospheric releas	е.

Potential Benefits of CCUS for India

- Direct emission reduction CCUS captures CO₂ before it enters the atmosphere.
 Decarbonization of industrial sectors Useful for high-emission sectors such as:
 - ∘ Coal-based power
 - Steel
 - Cement
 - Oil refineries
- Support for clean fuel production Captured CO_2 can be used to synthesize:
 - Green hydrogen
 - Ammonia
 - Synthetic methane
- Climate change mitigation Reduces overall greenhouse gas load in the atmosphere.
- Job creation Opportunities in engineering, construction, transport, and storage sectors.
- **Complement to renewable energy** Provides a base-load alternative where solar and wind are not viable.

Challenges in Implementing CCUS in India

- **High capital cost** Infrastructure and technology deployment require **large upfront investments**.
- Technology readiness Innovations like Direct Air Capture (DAC) are still in early stages.
- Lack of investment The sector is yet to gain momentum from private and institutional investors.
- Infrastructure constraints -
 - Need for **specialized pipelines** to transport CO₂.
 - Existing oil/gas pipelines are unsuitable due to corrosion risks.
- Storage challenges -
 - Limited availability of safe and suitable geological sites.
 - Many storage sites are **geographically distant** from emission sources.
- **Policy and regulatory gaps** No unified national regulation exists to oversee CO₂ capture, transport, utilization, and storage.

What Lies Ahead: India's Approach

- India is preparing to launch a **National CCUS Mission**, focused on:
 - Power
 - Steel
 - Cement industries

- Policy support required includes: Viability Gap Funding (VGF) Production Linked Incentives (PLI)
 - Tax credits for industries and innovators
- Need for a robust **regulatory framework** governing: SAL CIOS. COM
 - Site selection
 - Safety standards
 - Monitoring and liability
- Importance of **R&D investment** to:
 - ∘ Improve CO₂ capture efficiency
 - Lower costs
 - Develop new utilization technologies
- **Public-private partnerships** will be key to financing and scaling up projects.