

# **Fatal Belly-Landing**

Posted at: 01/01/2025

# Fatal Belly-Landing: Lessons from Jeju Air 7C2216

#### **Context:**

A devastating aviation accident occurred recently when Jeju Air Flight 7C2216 attempted a **belly-landing** at **Muan International Airport**, South Korea. The aircraft **overran the runway**, smashed into the **perimeter fence**, and **burst into flames**, resulting in the loss of **179 lives**. This tragic event highlights the risks and complexities associated with **belly-landings** and aviation safety.

## **Understanding Belly-Landing**

A **belly-landing**, also referred to as a **gear-up landing**, occurs when an aircraft lands without fully extending its landing gear, relying on its underside (or belly) to touch down.

# Conditions Leading to Belly-Landings

## 1. Landing Gear Failure:

Mechanical issues prevent the landing gear from deploying.

## 2. Emergency Landing in a Field:

• A stricken aircraft may land in a field if it cannot reach an airport.

# 3. Safety Considerations by the Pilot:

 Pilots may choose to skid the aircraft to a stop on its belly rather than land on wheels if they determine it to be safer.

## 4. Ditching (Water Landing):

• Emergency landings on water, such as in rivers or oceans, often involve belly-landing.

#### 5. Pilot Error:

• In some cases, pilots forget to deploy the landing gear, leading to a belly-landing.

# **Safety Precautions During Belly-Landings**

## 1. Emergency Services Preparedness:

• **Fire trucks and rescue teams** must be on standby to respond quickly in case of fire or evacuation needs.

#### 2. Foaming the Runway:

 Historically, chemical foaming of the runway was practiced to suppress sparks and fires. However, this is no longer standard practice due to advances in aircraft fire suppression systems.

# **Damages to Aircraft in Belly-Landings**

#### 1. Structural Damage:

 Even successful belly-landings result in significant damage to the aircraft's fuselage, engines, and wings.

# 2. Wing Vulnerability:

- Wings are close to the ground during a belly-landing, making them susceptible to damage.
- A **slight left or right bank** during landing, caused by wind or pilot error, can cause a wing to hit the ground. This could lead to:
  - The aircraft flipping over.
  - Cartwheeling or breaking apart.

# 3. Fire Risk:

• Friction from the aircraft skidding along the runway may generate **sparks**, potentially causing a fire.

# Key Terminologies in Aviation and Belly-Landings

## 1. Landing Long and Fast:

 When an aircraft touches down beyond the designated touchdown zone on the runway at speeds exceeding safe limits, leaving insufficient runway length for stopping.

#### 2. Slats:

• High-lift devices located on the **leading edge of the wing** that increase lift during **low-speed operations** like takeoff and landing.

## 3. **Flaps:**

• Devices on the **trailing edge of the wing** that enhance lift by altering the wing's camber and surface area.

#### 4. Stall:

• A condition where the aircraft **loses lift** and starts descending rapidly, often compared to "dropping like a stone."

# **Factors Contributing to the Jeju Air Incident**

The **Jeju Air 7C2216 accident** underscores multiple critical elements of belly-landings and runway safety:

- Landing Beyond the Zone: Likely landing "long and fast," leaving insufficient runway for safe deceleration.
- **Skidding Risks:** Friction from skidding caused sparks that ignited the aircraft.
- **Wing Damage:** Possible wing contact with the ground, destabilizing the aircraft and worsening the impact.

## **Conclusion:**

The Jeju Air tragedy is a stark reminder of the inherent risks in aviation, especially during emergency maneuvers like **belly-landings**. While such landings are sometimes necessary to save lives, they demand **meticulous preparation**, **pilot expertise**, and **immediate emergency response**. Learning from such incidents is essential to improving aviation safety protocols and preventing future accidents.

